REGULAR ARTICLE

Non-additive responses of soil C and N to rice straw and hairy vetch (*Vicia villosa Roth L*.) mixtures in a paddy soil

Guopeng Zhou • Weidong Cao • Jinshun Bai • Changxu Xu • Naohua Zeng • Songjuan Gao • Robert M. Rees

Received: 12 October 2018 / Accepted: 19 December 2018 © Springer Nature Switzerland AG 2019

Abstract

Aims We studied the effects of mixing rice straw and hairy vetch plant residues in a subtropical paddy soil, on subsequent carbon (C) and nitrogen (N) dynamics.

Methods Using a theoretical framework, we designed two groups of experiments (involving equal amounts of

Responsible Editor: Per Ambus.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11104-018-03926-6) contains supplementary material, which is available to authorized users.

G. Zhou · W. Cao · J. Bai · N. Zeng Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China

G. Zhou

The Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China

W. Cao (⊠) · S. Gao

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China

e-mail: caoweidong@caas.cn

C. Xu

Institute of Soil&Fertilizer and Resource&Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, People's Republic of China

R. M. Rees () Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK e-mail: Bob.Rees@sruc.ac.uk

Published online: 07 January 2019

residual C or N addition, referred to as either C or N treatments). Each experiment included mixed residues of rice straw and hairy vetch at different mixing ratios. Soils together with residues were incubated at 25 °C under waterlogged conditions for 100 days. Greenhouse gas (GHG) emissions and soil C and N fractions were measured continuously.

Results Both C and N treatments affected soil C and N dynamics, and these dynamics were quantitatively dependent on residue C/N ratios. The effect of residue mixtures on C and N dynamics could not be predicted from single residues, since there were non-additive effects of residue mixtures. Synergistic effects were generally more frequent than antagonistic effects. Residue mixtures tended to enhance CO2 and CH4 emissions in both C and N treatments but decreased N₂O emissions in the N treatment. In the N treatment, dissolved organic C (DOC), dissolved organic N (DON), and microbial biomass C (MBC) concentrations increased. DOC and DON concentrations decreased in the C treatment. Residue mixtures enhanced the global warming potentials (GWP) of greenhouse gases (GHG) emitted from soil by non-additive synergistic effects. The C/N ratio of residue mixtures affected the non-additive responses of soil C and N dynamics, for example mixtures with a C/N ratio of 25 had higher CO₂ emissions and DOC concentrations than those with a C/N ratio of 35 as a consequence of non-additive effects, however, CH₄ emissions and MBC concentrations were higher in mixtures with a C/N ratio of 35 than in mixtures with a C/N ration of 25. Conclusions These results indicated that non-additive effects can impact soil C and N dynamics and that

